
Discriminating Development Activities in Versioning Systems: A Case Study∗

Juan Jose Amor, Gregorio Robles, Jesus M. Gonzalez-Barahona, Alvaro Navarro
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{jjamor,grex,jgb,anavarro}@gsyc.escet.urjc.es

Abstract

When characterizing the coding activity of develop-
ers on a software project, a common technique is to
study the transactions in the versioning system. How-
ever, not all transactions are equal, neither represent the
same kind (both in quality and quantity) of activity. In
this paper, a methodology for classifying the interactions
of developers with versioning systems is proposed, based
on the analysis of the textual descriptions (comments)
attached to each transaction. Some results of applying
this methodology to a specific case (the FreeBSD CVS
repository) are presented, alongside with some ideas
about how to use this technique for improving effort es-
timation and other research lines.

1. Introduction

Analyzing the activity of developers in software
projects can be of interest for several reasons, being ef-
fort estimation one of the most clear case studies. Mea-
suring activity can be difficult in the absence of time-
sheets or similar information. In libre software1 projects
this is usually the case, but fortunately, other sources of
information are usually available to infer activity. Revi-
sion control systems, mailing list archives and bug track-
ing systems, for example, contain a huge amount of data
about developer activity in several fields [1]. These data
are generally publicly available and can be collected and
analyzed in order to obtain a detailed view of the activity
of developers.

In the specific case of versioning systems, the whole
history of modifications to the code is available, includ-

∗This work has been funded in part by the European Commission,
under the CALIBRE CA, IST program, contract number 004337.

1Through this paper the term “libre software” will be used to re-
fer to code that conforms either to the definition of “free software”
(according to the Free Software Foundation) or of “open source soft-
ware” (according to the Open Source Initiative).

ing the changes for each modification, who performed
it, and when it was done. Attached to each modifica-
tion, a textual description of the change is also available.
For many years, research groups in several domains have
been using this information, although most of them have
ignored the textual descriptions of the changes, probably
because of their lack of structure.

Some authors, however, have used this information
to characterize each modification, especially code trans-
actions2. So, Mockus et al. [7] proposed a methodology
for classifying code transactions based on the analysis
of textual descriptions. They normalized the texts (that
is, converted them to lower case, removed the most com-
mon words as they do not add semantic information, and
extracted the stem of each word) and performed word
frequency analysis and keyword clustering to establish
a set of rules in order to classify each modification into
one of the three types of maintenance (corrective, adap-
tive and perfective) [9]. German [4] also used descrip-
tions to analyze maintenance (bug fixing) and comment
modifications. Although a good starting point, these ap-
proaches have severe limitations if our intention is to
have a finer-grained classification that allows to distin-
guish among the various types of corrective, adaptive
and perfective maintenance activities.

In this paper, we present a methodology that uses dif-
ferent techniques (such as Bayesian analysis) to obtain
a fine-grained classification of code transactions from
their textual description, and provide some results of
having applied this methodology on a case study. In the
next section, we will introduce our detailed classification
of code transactions. The third section contains the de-
scription of the methodology and the forth one, results
from applying it on FreeBSD. Finally, conclusions are
drawn, limitations are pointed out and hints for further
research are suggested.

2A code transaction is an atomic commit which changes at least
one source code file [4]. Another term for code transactions that can
be found in literature is modification record (in general, inresponse to
a modification request).

Figure 1. Classification schema for code transactions

2. Classification of transactions

Since we were interested in identifying kinds of
transactions with a finer grain than in other studies, we
first designed a schema for classifying code transactions
(see figure 1). The starting points of the schema are
the already-mentioned ‘classical’ types of maintenance
(corrective, adaptive and perfective) [9]. In addition, a
fourth type has been added (administrative). There we
include several kinds of transactions usually performed
not by developers, but by CVS3 administrators, such
as initial file creation, administrative changes in ver-
sion number, administrative branch merging or splitting,
among others.

With this classification in mind, we examined the
CVS systems of several libre software projects, identi-
fying subtypes for each type. Since the goal in the long
term of our study is using activity to estimate effort, we
considered specially those types which could have dif-
ferent impacts on effort. At the same time, we were in-
terested in subtypes relevant in most projects, and not
specific to one of them. This lead us to the following
subtypes:

• Corrective transactions were classified according to

3Although it is being phased out by other newer systems, CVS is
still the most used source code management system in libre software
projects. It is also the one used in the case study shown in this paper.

the kind of fix or maintenance activity: CLI/GUI4

(fixes which affect only to the user interface, ei-
ther textual or graphical, and not to application
functionality), functional (fixes to functional code),
generation (fixes on makefiles, etc), configuration
(fixes on ‘config’ files, etc.) and other (for instance,
a spelling fix on a comment).

• Adaptive transactions were first classified in im-
provements (modifications for implementing new
features) and merging of code from other projects
(with the purpose of adding functionality)

• Perfective transactions were split in code refactor-
ing, external dependency and perfective changes in
code comments.

• Administrative tasks were classified in file creation
(when a new file is created and cannot be classified
in the previous categories), changes in copyright
information (including license), change in version
number, and merging/branching(eg., when the test-
ing branch is merged on the stable one).

Many of these subtypes have also been divided into
several categories as shown in figure 1. It is important
to notice that this classification is not complete and can

4CLI stands for Command Line Interface, while GUI is the
acronym of Graphic User Interface.

be improved by studying more projects. However, it is
good enough for the purposes of testing our classifica-
tion methodology.

3. Methodology

The methodology we propose to classify the transac-
tions can be summarized as follows:

1. We download information about all commits from
the CVS repository, using the CVSAnalY tool [8,
5]. As a result of this process, code transactions
are identified and stored in a database with all the
information related to them.

2. We then classify the transactions in the database ac-
cording to the textual information, using thenaive
Bayesclassifier (in several steps, as will be detailed
below). As a result, each transaction is classified
into a type with a certain probability.

More in detail, CVSAnalY works by analyzing the
CVS log entries, and grouping commits in code trans-
actions (using the algorithm described in [4]). For
each identified transaction, rich information is stored
(file type, version, commiter, time, textual description,
etc.). Therefore, it produces a database with an exhaus-
tive description of the CVS repository, in a structured
format.

For the classification of code transactions, the most
popular text classification method based in computer
learning is run on the textual description of each. It is
thenaive Bayesclassifier [3], which is based in Bayes’
theorem. Although it requires that the set of attributes
are conditionally independent for each class, it usu-
ally performs well enough in real cases (for instance,
it is currently used in many junk mail automatic fil-
ters [2]). The actual software used for running this al-
gorithm is the Bow toolkit [6], a system implementing
several text classification algorithms, beingnaive Bayes
one of them.

The process starts with an expert classifying a very
small, randomly selected fraction of the transactions
identified by CVSAnalY (using a database editor).
Then, a script produces files in the format required by
rainbow, the main program of the Bow toolkit.rain-
bow learns from these files, producing its own database.
Using other scripts, the textual information for all the
unclassified transactions are given torainbow, which
classifies them with a certain probability. Both the deci-
sion of the classifier and the probability are stored in our
database.

This first automatic classification was considered
poor, since it produced a high fraction of wrongly clas-
sified transactions. Therefore, a refinement step was
performed after it. A random sample of the transac-
tions classified with lower probability, or which lead to
a wrong classification, was selected, and classified again
by an expert. The resulting information improvedBow’s
Bayesian classification capabilities.

After that, all the transactions in the database were
classified again, usingrainbow. In the cases we have
studied, this second run has given results which we have
considered good enough: an average above 60% for the
probabilities estimated by the Bayesian classifier for the
more likely classification of each transaction, and also a
verification by an expert of a random sample, with a suc-
cess rate over 70%. If these percentages are not enough,
further refining steps could be performed.

4. Case study: FreeBSD

We have tested the described methodology with the
CVS repositories of several libre software projects. To
illustrate how it works, we present here the process of
applying it to FreeBSD, a complete operating system,
for which both kernel and user-land utilities (modulesrc
of the CVS repository) are held in the same CVS repos-
itory, using a multi-branch approach:

• FreeBSD-CURRENT (HEAD) includes work in
progress, experimental changes, and transitional
mechanisms that might or might not be present
in the next official release of the software. This
branch is generally associated with major version
numbers.

• FreeBSD-STABLE contains the more conserva-
tive code which generally have first gone into -
CURRENT.

Around 4.x, FreeBSD introduced a third class of
branch, a “release branch”, used for a number of
things, including the initial release engineering, security
patches, and errata patches. Therefore, a schema of the
FreeBSD branch tree is as follows:

HEAD CVS HEAD
RELENG_6 6-STABLE devel branch

RELENG_6_0 6.0 eng branch
RELENG_5 5-STABLE devel branch

RELENG_5_0 5.0 eng branch
....
RELENG_5_5 5.5 eng branch

RELENG_4 4-STABLE devel branch

RELENG_4_11 4.11 eng branch
...

We have performed a separate analysis of each CVS
branch, storing the extracted information in separate
databases. Table 1 provides some general statistics
about the branches under study. Even though the fol-
lowing study considers only branches, the first row of
the table shows all the modifications performed on the
versioning system, including those files that do not be-
long to any branch or that have been removed5.

Tag ACs Commits Commiters
– 139190 533806 440

HEAD 9052 36404 290

RELENG 6.1 101 175 37

RELENG 6.0 89 229 34

RELENG 6 2417 7565 142

RELENG 5.5 19 23 5

RELENG 5.4 140 285 36

RELENG 5.3 94 270 19

RELENG 5.2 167 318 38

RELENG 5.1 65 141 22

RELENG 5 231 12899 164

RELENG 4.11 96 249 28

RELENG 4.10 74 198 18

RELENG 4 13742 57358 263

RELENG 3 3530 18813 140

Table 1. CVS branches in FreeBSD.

From the analysis of the various branches, a database
with a total number of 33,335 code transactions was ob-
tained, from 1993-06-18 (in the HEAD branch) to 2006-
05-29 (also in HEAD).

The starting random set of transactions classified by
an expert amounted to 300 (for all the branches). After
the firstnaive Bayesianclassification, the average prob-
ability of the most likely type for each transaction was
of about 50%. For the second refining step, a sample of
100 more transactions were classified by an expert. This
step raised the average probability to above 65%.

After that, we did an automatic classification of each
branch and discovered that the average probability of
success in classification was low (around 50%), so we
selected a second random set of 100 transactions clas-
sified with low (under 40%) probability and classified
again them manually. We also examined random sets
of records and, when we observed bad classification, we
reclassified them. After feeding these newly classified
records to the Bow toolkit, the average probability of

5Actually, there is no file removal in CVS;removedfiles are located
in the attic and can be restored anytime.

success went up to around 65%, and the classification
was correct in more than 70% of the cases for a ran-
dom sample verified by an expert (this sample was of 30
transactions for each branch).

In fact, it was verified that most of the wrongly clas-
sified records were too ambiguous, even for a human.
For example, while a text such as “Fixed range address
bug” was clearly classified as a bug fix, texts such as “be-
foreinstall - SCRIPTS” or “mdoc(7) police: sweep” or
“Cosmetics” are clearly ambiguous and cannot be clas-
sified (without inspecting the actual code changed). The
classification of those transactions requires the consider-
ation of other parameters, such as list of files committed
or the specific lines added or changed, which are out of
the scope of this paper.

The results shown in table 2 consider transactions
that have been classified with a probability of suc-
cess over 70% (as estimated by the Bayesian classifier).
About 25% of the transactions in the HEAD branch were
classified as corrective activity (maintenance), while
25% were classified as adaptive/improvement activity,
almost 50% as perfective/refactoring, and the rest (less
than 2%) as administrative, adaptive/merging or per-
fective/external dependency. Our approach is espe-
cially limited when classifying administrative transac-
tions. This is because these transactions are not com-
mon and their textual description is not very rich. On
the other hand, those administrative transactions which
are difficult to identify with this approach contain gener-
ally a large amount of files, so including this information
in our methodology could give better results.

HEAD RELENG 6 RELENG 6 1

Corrective/Bug fix 25,87 59,04 88,05
Adaptive/Improvement 25,17 16,63 7,46

Adaptive/Merging 0,32 1,07 0
Perfective/Refactoring 47,00 22,96 2,99

Perfective/Ext. Dep. 1,54 0,08 1,49
Perfective/Doc. 0 0 0
Admin/File C. 0,08 0,23 0

Admin/Copyright 0 0 0
Admin/Versions 0 0 0

Admin/Branching 0 0 0

Table 2. Classification for three branches
(probability of success: 70%).

Although with a minor number of transactions, other
branches are shown in table 2. For comparison, if
we considered all the development branches aggregated
(RELENG N), over 50% of the transactions correspond
to maintenance, around 35% to perfective/improvement

and less than 20% to adaptive activities. For release en-
gineering branches (RELENGN M), higher values of
corrective activity (75% to 90%) are obtained.

This different behavior for the different types of
branches is no surprise. In release engineering branches
most activity is focused on critical bug fixing and se-
curity issues, while most improvement activity is done
in HEAD branch. Some checks (inspection by an ex-
pert) have verified that, in fact, some improvement ac-
tivity is merged in release engineering and development
branches from HEAD, and also critical bug fixes are ap-
plied, not only to all supported stable branches but also
to the main HEAD branch. Another observed behavior,
also expected, is that corrective transactions tend to be
smaller (in number of commits) than other types (see
figure 2).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
Class 1 (Corrective)

Class 2 (Adaptive)
Class 3 (Perfective)

Figure 2. Number of files involved for sev-
eral types of transactions (HEAD branch).

5. Conclusions

In this paper we have proposed a set of develop-
ment activities in which we can classify code transac-
tions in versioning systems. We have therefore used an
approach that is automatic, although human-aided, that
does not rely on the manual classification of keywords
which shows to be only usable when classifying a small
set of disjunctive activities. We have tested the method-
ology with the CVS branches of the FreeBSD project
and have observed some preliminary behaviors that in-
dicate that this approximation is very promising.

However, we also have identified a set of limitations.
As our approach is text-based and depends on training,
it does not work well with ambiguous texts or with very
infrequent cases. A possible solution for this is to com-

plement the analysis with other available data about the
transaction, such as its size or its most common file type.

An interesting future line of research could be to
apply this methodology on other information exchange
tools used in development such as mailing lists and bug-
tracking systems, where natural language is also com-
mon and makes automatic classifications difficult. This
could extend the main idea behind this paper, that we
need to classify various types of activity in order to
weight activities different for the estimation of effort [1],
to other data sources.

6. Acknowledgments

We thank Robert Watson (member of FreeBSD, now
at the University of Cambridge), for his invaluable help
in the interpretation of the FreeBSD case study.

References

[1] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona. Ef-
fort estimation by characterizing developer activity. In
8th Intl. Workshop on Software Engineering Economics,
pages 3–6, Shanghai, China, May 2006.

[2] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos,
G. Paliouras, and C. D. Spyropoulos. An evaluation of
naive bayesian anti-spam filtering. InWorkshop on Ma-
chine Learning in the New Information Age, pages 9–17,
June 2000.

[3] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers.Machine Learning, 29(2 - 3):131–
163, November 1997.

[4] D. M. Germán. An empirical study of fine-grained soft-
ware modifications. InProc Intl Conference in Software
Maintenance, Chicago, IL, USA, 2004.

[5] B. Massey. Longitudinal analysis of long-timescale open
source repository data. InProc Intl Workshop on Pre-
dictor Models in Software Engineering (PROMISE 2005),
St.Louis, Missouri, USA, 2005.

[6] A. K. Mccallum. Bow: A toolkit for statistical language
modeling, 1996.
http://www.cs.cmu.edu/˜mccallum/bow.

[7] A. Mockus and L. G. Votta. Identifying reasons for soft-
ware changes using historic databases. InProc Intl Conf
Softw Maintenance, pages 120–130, October 2000.

[8] G. Robles, S. Koch, and J. M. González-Barahona. Re-
mote analysis and measurement of libre software systems
by means of the CVSAnalY tool. InProc 2nd Workshop
on Remote Analysis and Measurement of Software Sys-
tems, pages 51–56, Edinburg, UK, 2004.

[9] E. B. Swanson. The dimensions of maintenance. InProc
2nd International Conference on Software Engineering,
pages 492–497. IEEE Computer Society Press, 1976.

