
Evolution and Growth in Large Libre Software Projects∗

Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jjamor,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

Software evolution research has recently focused on
new development paradigms, studying whether laws

found in more classic development environments also
apply. Previous works have pointed out that at least
some laws seem not to be valid for these new environ-
ments and even Lehman has labeled those (up to the
moment few) cases as anomalies and has suggested that
further research is needed to clarify this issue. In this
line, we consider in this paper a large set of libre (free,
open source) software systems featuring a large commu-
nity of users and developers. In particular, we analyze
a number of projects found in literature up to now, in-
cluding the Linux kernel. For comparison, we include
other libre software kernels from the BSD family, and for
completeness we consider a wider range of libre soft-
ware applications. In the case of Linux and the other
operating system kernels we have studied growth pat-
terns also at the subsystem level. We have observed
in the studied sample that super-linearity occurs only
exceptionally, that many of the systems follow a linear
growth pattern and that smooth growth is not that com-
mon. These results differ from the ones found generally
in classical software evolution studies. Other behaviors
and patterns give also a hint that development in the li-
bre software world could follow different laws than those
known, at least in some cases.

1. Introduction and research goals

The number of studies on software evolution is rel-

atively low, despite being a field opened more than 30

years ago. The lessons learned are many, and are sum-

marized in a set of laws, stated by Lehman, which have

∗This work has been funded in part by the European Commission,

under the CALIBRE CA, IST program, contract number 004337, in

part by the Universidad Rey Juan Carlos under project PPR-2004-42

and in part by the Spanish CICyT under project TIN2004-07296.

grown to eight in their latest version [17]. These laws
have been validated empirically with some large indus-

trial software projects. Recent research is exploring

whether they are applicable to other domains, such as

systems developed using eXtreme Programming mod-

els, based on the COTS paradigm, etc.

One of this ‘other’ domains is libre software1. Al-

though its basic difference with ‘traditional’ software

lies in the licensing terms, many argue that there are also

significant differences in the way they are built. For in-

stance, most of the procedures in libre software are open

and public, targeted to ease the followup and joining by

new developers, with the aim of forming a developer

community in which individuals can play several roles

(from core developers to casual bug report submitters).

Although there is some literature showing that projects

with a surrounding community are exceptions if we con-

sider the whole libre software landscape [13], they are

still the most notorious, larger in size and user popula-

tion, and those which have featured most attention by the

public, the industry and the research community (con-

sider for instance Mozilla [6, 18, 19], Linux [9, 19, 21],

Apache [18], GNOME [14, 8], or FreeBSD [4]).

For the study presented in this paper, we have con-

sidered exactly this kind of libre software projects: large

in size (at least in the order of 100K lines of code), and

with a large user and developer community. Our inten-

tion is to explore how they behave in the context of the

laws of software evolution, specially regarding software

growth. For this matter, we started by reproducing (with

current data) the classical study performed five years ago

on the Linux kernel [9], which seemed to question the

conformance of libre software projects to some of those

laws. Later, we extended the study by doing a similar

analysis on other libre software systems in the same do-

main (operating system kernels): the *BSD family. Fi-

1Through this paper we will use the term “libre software” to refer

to any code that conforms either to the definition of “free software”

(according to the Free Software Foundation) or “open source software”

(according to the Open Source Initiative).

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

nally, we performed again the same kind of study for 18

other large libre software applications, in order to find

out whether the results found are general or not for this

domain.

In all these cases, we also had another goal in mind:

to look for differences in the evolution of the software

before and after the 1.0 release. Traditional software

evolution studies consider only releases after the first

one delivered to the customers (usually 1.0). However,

it is a common behavior in many libre software project

to follow the rule “release early, release often”, which

means that programs are available to the public well be-

fore they are considered stable, and that the first release

named “stable” is not that special. Therefore, it is diffi-

cult to find a point where “evolution” starts, so we stud-

ied (if available) the whole life cycle and hoped to find

the significance of the 1.0 release from our results.

The rest of this paper is structured as follows. The

next section references the previous work on software

evolution, including studies related to libre software.

The third section details the methodology used in the

presented study. After that, the main results of apply-

ing it to the Linux kernel and its subsystems are shown.

In the fifth section, the same is done for the family of

*BSD kernels, while the sixth one is devoted to discuss

whether the findings in those systems can be generalized

to other large libre software cases. In the final section,

some conclusions are drawn.

2. Previous research

Thirty years of research on software evolution have

resulted in a set of laws, known as Lehman’s Laws of

Software Evolution [15]. Although the number of laws

has grown from three in the seventies to eight in their

latest version [17], all of them have been empirically

proved, by studying projects developed in traditional in-

dustrial software development environments.

One of the laws that is more related to the study we

are presenting is the Fourth Law [17], which states that

the rate of development over the life of a program is ap-

proximately constant, and independent of the resources

devoted to it. Both Lehman and a statistical study per-

formed by Turski [23] found that those software systems

follow an inverse square growth rate. The equation given

by Turski is:

Si = Si−1 + E/(Si−1)
2

where Si is the estimated size of the system at the

i-th release (in number of source modules2) and E is a

2Although there is no precise definition of what a module is as it

varies from system to system, in general a module refers to an individ-

parameter. An explanation that is given for this equation

states that for a system of size n (modules), the maximal

number of possible interconnections is n · (n − 1). As

the system grows, introducing new modules will impact

a growing number of existing ones and more effort will

be required [16].

When solved directly, the equation is approximately

S = (3E · t)1/3

where S is the size of the system measured in mod-

ules, t is time and E a parameter.

In the specific field of libre software, there are some

research works from the point of view of evolution:

Burd et al. [1] evaluate the evolution of GCC, a compiler

collection written mainly in C; Capiluppi, alone or with

colleagues, has also authored several works about the

evolution of libre software projects [3] and has proposed

some models [2] (although those studies are focused on

small to middle-sized projects). However, the most rel-

evant study on the evolution of libre software projects is

probably the one by Godfrey and Tu [9], who studied the

Linux kernel in 2000. They found that Linux, then about

2 million lines of code in size, had a super-linear growth

rate, apparently in contradiction with Lehman’s Fourth

Law, and with the statistical evidence from Turski.

The main conclusions of this work can be summa-

rized as follows:

• The Linux kernel exhibits a super-linear growth

rate. Most of the growth is due to new functionality

and added hardware support, not to bug fixing.

• Much of the functionality (specially device drivers)

is complex and extensive, but also relatively inde-

pendent from each other, and from the rest of the

system.

• External contributions (both for adding and main-

taining code) were frequent in the devices and ar-

chitecture subsystems. Maintenance is often done

by third parties.

• Large parts of the kernel (specially device drivers)

do not require active maintenance, but are still

shipped with Linux just in case the user needs them.

• Fourth Lehman’s law of software evolution is pre-

sumably not fulfilled in the case of Linux.

In a later paper, the same authors propose the follow-

ing software growth equation, based on statistical anal-

ysis [10]:

y = 0.21 · t2 + 252 · t + 90, 055

ual source code file.

2

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

where y is the size in uncommented lines of code and

t the days since version 1.0. The coefficient of determi-

nation, calculated using least squares, has a value of r2

= .997.

There is also a study by Succi et al. [22] about the

growth in libre software systems, which confirms this

super-linearity for the Linux kernel, but finds linear

growth for GCC and Apache.

Both studies have been considered by Lehman et

al. [16] as anomalies of the ‘laws’ of software evolu-

tion affecting libre software, at the same time that they

encourage further research on this topic. This paper fol-

lows that advice, providing further empirical insight in

that direction.

3. Methodology

The methodology used in this work is based on an-

alyzing source code publicly available on the Internet.

The code corresponding to every snapshot considered is

downloaded to a local directory, where its size is com-

puted. The results are stored in a database, which is later

used for plotting and performing a detailed analysis.

There are some differences with respect to which

kind of public repositories are used for obtaining the

source code, and which snapshots are considered, de-

pending on what is available for each project. Details

will be sketched below for the projects considered.

The size of each snapshot is obtained by using SLOC-

Count3, a tool which uses some heuristics to identify

files with source code (and the language in which they

are written), and to compute the number of physical

source lines of code (SLOC) they contain. For this pur-

pose, physical SLOC are defined as “a line that finishes

in a mark of new line or a mark of end of file, and that

contains at least a character that is not a blank space

nor comment”. SLOCCount is a mature tool that has

been used also for analyzing other systems, such as com-

plete GNU/Linux distributions with several dozens of

millions of source lines of code [11, 12].

In the case of the Linux kernel, there is no pub-

lic CVS repository available. Therefore we decided to

download release packages. All Linux releases are avail-

able in Linux mirrors, where they are packed as com-

pressed tar files. We got the official and experimental

kernel releases, from 1.0 to the last one published in

December 2004 (2.6.10). We have also measured those

known as “historic” releases, that is, those released prior

3SLOCCount has been developed by David A. Wheeler, and is li-

bre software. It is available from http://www.dwheeler.com/
sloccount/.

to 1.0, although they are considered to be unstable, and

suffered from frequent reorganizations in the code base.

In order to recreate Godfrey’s study on the Linux sub-

systems, we did not only compute the number of source

lines of code for the whole system, but we also gath-

ered data from all main subdirectories (which we will

call subsystems from now on).

For all other systems considered in this paper, pub-

lic CVS repositories are available. In libre software

projects, it is common practice that even being unsta-

ble, the software in the repository can be compiled and

is usable, up to the point that automatically generated

nightly-builds are offered in many cases, i.e. it is not

in a state of flux. Releasing a new version of the soft-

ware consists usually in taking one of this snapshots and

assigning it a specific release name/number, although

some projects have more sophisticated procedures [5].

Taking these facts into account, we retrieve monthly

snapshots from the CVS repositories, starting by the

time the repository was established, until April 2005.

The whole process has been automated and can be ob-

tained as a publicly available tool [20]. For *BSD ker-

nels, only kernels (directory src/sys) are considered, for

the rest, the whole CVS module is studied.

Although Lehman suggests plotting software size

against release numbers, we have done it against time,

for two reasons. First, we feel this way matches better

the semi-continuous release process found in many libre

software projects. And second, this way of depicting

evolution was also the one used by Godfrey et al., for

Linux. This also implies that using periodic CVS snap-

shots is enough, and we do not need the source packages

for specific releases.

Another sensible difference with Lehman’s studies

lies in the metric used for software size. Lehman uses

modules, because he argues this metric is more consis-

tent (it has a “higher degree of semantic integrity”) than

considering source lines of code [16]. Godfrey and Tu

counted uncommented lines of code, and we will do the

same. However, preliminary studies on the Linux kernel

seem to imply that the mean size of modules (counted

in lines of code) remains almost constant in time; we

have observed the same behavior in a fast inspection for

some projects. This would imply that counting lines or

modules would give the same evolution patterns. How-

ever, further research is needed to verify if this is valid

in general and to study the correlation of both metrics if

not.

As a final note, it is worth mentioning that in some

cases, the projects under study started outside a CVS,

but were later uploaded to one. In those cases, an initial

3

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

gap will appear in the plots.

4. Observations on the Linux kernel

Table 1 shows the main differences between the anal-

ysis on Linux by Godfrey and Tu, and the one we have

performed. When the first study was performed (in

the year 2000), two concurrent Linux versions existed:

the stable version 2.2.14 and the development version

2.3.39. 34 of the 67 stable releases, and 62 of the 369

development releases were analyzed in it, totaling 96 re-

leases. In our study, we have considered all the releases

published, both stable and development, including those

prior to the considered first stable release (1.0), and up

to 2.6.10 (released December 24th 2004). All in all, we

have studied 123 stable and 457 development releases.

It should be noted that even if the 2.6 branch is the

bleeding-edge stable branch, previous stable branches

(2.0, 2.2 and 2.4) are still actively maintained (although

usually without addition of new functionality, only bugs

are removed) and new releases appear from time to time.

The number of lines of code in 2.6.10 is larger than 4

millions, with a tarball size of about 45.5 MB. These

figures can be compared to those of 2.3.39: about 1.5

million lines of code, and about 17 MB of tarball.

Godfrey & Tu Our study

Date Jan 2000 Dec 2004

of releases 369D + 67S 457D + 123S

Studied releases 62D + 34S 457D + 123S

Most recent ver. 2.2.14 (2.3.39) 2.6.10

KSLOC most recent 1,425 (1,607) 4,147

Tarball size (MB) 15.9 (17.7) 45.5

Counting wc + awk SLOCCount

Table 1. Comparison between Godfrey &
Tu’s [9] and our study.

In the next subsections we will show the results of

reproducing Godfrey and Tu’s study for the growth of

Linux system-wide and for its subsystems (with the al-

ready mentioned slight methodological differences).

4.1. System level growth for Linux

Figure 1 shows the growth of Linux in terms of

sources lines of code, from the first versions in 1991 to

the most recent one in 2005. We have depicted two ver-

tical lines in all figures for Linux, showing the release

date of the 1.0 version (in the year 1994) and the time of

the study by Godfrey and Tu (in the year 2000). It can

be noted that the super-linearity that was found by God-

frey and Tu seems at first glance to have become more

remarkable with time. Based on statistical analysis we

have obtained the following software growth equation:

y = 0.26 · t2 − 322 · t + 195, 183

where y is the size in source lines of code and t the

days since version 1.0. The coefficient of determination

computed using least squares is r2 = .990.

Compared to Godfrey and Tu’s equation from 2000,

we see that both are quite similar. Interestingly enough,

our initial inspection, which led us assume that the

super-linear growth has become more remarkable with

time, is demonstrated by the fact that the factor that

multiplies the quadratical growth is now 0.26 instead of

0.21, meaning that the growth of Linux has accelerated

during the last five years.

Another fact that can be observed from this figure

is that the growth pattern followed by the Linux devel-

opers has changed over time. Until the year 2000 we

find a strong growth in the development branches, with

stable branches coming out of it with almost horizon-

tal evolutions (showing almost stagnation in growth),

while the newer stable branches 2.4 and 2.6 show steep

growths. That way, the current stable branch (2.6) is

growing steadily, with a shape quite similar to a develop-

ment branch. However, the latest releases seem to slow

down, maybe foreseeing the stabilization that would oc-

cur just before the start of a new development branch

(which would be 2.7).

Graphs for the evolution in time of the tarball sizes or

the number of files have been omitted for lack of space,

but they show the same behavior in terms of growth as

the number of lines of code shown in figure 1.

4.2. Growth of major subsystems

Godfrey and Tu included in their study the analysis of

the major Linux subsystems, following an idea by Gall

et al. [7], who stated that looking at the evolution of sub-

systems could bring more insight about the software un-

der consideration.

The growth of major subsystems can be seen in fig-

ure 2. As in the original work, the most growing subsys-

tem is the one comprising drivers, which grows steadily

even though in version 2.5.x the sound subsystem was

taken apart (which justifies the ripple around 2002).

Godfrey and Tu plotted the evolution of the share

of code by the major subsystems from version 1.0 (in

1994), while we also studied the previous versions al-

though we have not included that figure in this paper

4

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

 3500000

 4000000

 4500000

1990 1992 1994 1996 1998 2000 2002 2004 2006

1.0
1.1
1.2
1.3
2.0
2.1
2.2
2.3
2.4
2.5
2.6

Figure 1. Growth (lines of code) of Linux

for the sake of space. Those early releases show an er-

ratic behavior, because the architecture for Linux was

at that time not specified and changed drastically sev-

eral times. But from version 1.0 onwards, all major sub-

systems show an almost parallel growth pattern, mean-

ing that their relative growth is similar. Again, the gap

that can be found in early 2002 is due to the removal of

sound from drivers, while the one in early 2001 is due

to some code being allocated to the arch subsystem, as

it can be clearly observed from the figure. Besides these

inconsistencies, we can observe how the share of code

corresponding to the drivers subsystem has remained

almost constant since 2000, while in the period from

1998 to 2000 its share grew from around 50% to 60%

of the total kernel size, even when Linux itself doubled

its size. On the other hand, net and fs show a decreas-

ing share, although it seems that in the latter case its

presence has remained around 10% during the last seven

years, while include and sound remain almost constant

in time through the whole system life, since version 1.0.

If we filter out the drivers subsystem from figure 2,

we can identify the arch, fs, include and net subsystems

and see how their growth shows a super-linear pattern.

This occurs even in the case of net, which has a growth

 0

 500000

 1000000

 1500000

 2000000

1990 1992 1994 1996 1998 2000 2002 2004 2006

arch
drivers

fs
include

init
ipc

kernel
lib

mm
net

sound

Figure 2. Growth of the major subsystems
in Linux (development releases)

5

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

that is not that steep as the one of the others. Hence,

we can conclude super-linear growth patterns can also

be found at the subsystem level in Linux.

Figure 3 shows the growth of the smaller, but most

essential subsystems of Linux: init, ipc, kernel, lib and

mm. The behavior before 1994 (version 1.0) is again

chaotic for the kernel subsystem. Much of its code was

later moved to other subsystems, although since 1995

it shows a super-linear growth almost equal to the one

exhibited by the mm subsystem. The rest of the sub-

systems do not show clear growth patterns: besides lib,

which has recently started to show a clear tendency to

grow, the rest remain almost constant for a long time, al-

though and from time to time they are affected by small

gaps because of code inclusion or exclusion. In any case,

all these subsystems are relatively small, which makes

their growth patterns less significant than those consid-

ered before for the system-wide analysis.

 0

 5000

 10000

 15000

 20000

1990 1992 1994 1996 1998 2000 2002 2004 2006

init
ipc

kernel
lib

mm

Figure 3. Growth of the smaller, core sub-
systems in Linux (development releases)

Performing our study with smaller granularity, we

can study the subsystems that compose the driver sub-

system, which is by far the most important in terms

of lines of code. Interestingly enough, for almost all

those subsystems we couldn’t see hardly no super-linear

growth. The only curve that shows such a behavior is the

one that groups the “rest” of the drivers (those that are

not one of the major ones). The rest show linear trends

with periods of high activity, when a lot of code is in-

cluded at once (as for instance in early 2004 for scsi), or

regularly (the net subsystem shows a pronounced growth

from mid 1999 to early 2000, clearly different from the

linear trend before and after that period). It can be ob-

served that the sum of other surpasses it. But none of the

subsystems in other surpasses net; what happens is that

their number has raised to 37 more than those studied by

Godfrey and Tu.

In general, and in all subsystems, when we perform a

study on a smaller granularity level, super-linearity gets

less and less frequent and linearity arises. Godfrey and

Tu pointed out the existence of independent develop-

ment groups that worked in parallel due to a high mod-

ularization of the Linux kernel. We are currently ac-

tively researching if the linear growth patterns that arise

at a detailed level of analysis correspond to these de-

velopment groups. This could mean that each subsys-

tem would behave as a whole, independent system, with

its own (linear) growth pattern. In that case, the whole

kernel is just the composition of independent behaviors

throwing a super-linear pattern as a raise in the number

of subsystems can be observed.

5. Observations on the *BSD kernels

The operating systems based on the BSD kernel con-

stitute the most similar alternative to Linux-based op-

erating systems in the libre software world. All BSDs

derive from the UNIX version made at Berkeley since

the 1970s. In particular, both FreeBSD and NetBSD are

derivatives of the 4.4 BSDLite version released 1994,

while OpenBSD is a branch (first released 1996) from

NetBSD. These three BSD derivatives share architecture

and a lot of code [24], so ‘copying’ source code, or even

entire modules from the other kernels is common prac-

tice.

As in the case of the Linux kernel, we have re-

searched the growth of each of the BSD kernels as a

whole, and at the subsystem level.

5.1. System level growth for the *BSD kernels

Figure 4 gives the system growth for these systems

starting in late 1995, when OpenBSD had its first com-

mits. Even though all three kernels have achieved a

significant size (2.5 MSLOC for NetBSD and over 1.5

MSLOC for OpenBSD and FreeBSD), we can see that

their growth is not super-linear.

NetBSD and FreeBSD show an almost linear growth

pattern (see the values of the determination coefficient

r2 in table 2), which OpenBSD follows too, but only

until 2001 (afterwards it loses large quantities of code

in two occasions). Interestingly enough, we can identify

a super-linear growth rate for FreeBSD until the year

2000, which means that if Godfrey and Tu would have

6

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

BSD kernel Growth equation (linear fit) r2

NetBSD y = 610.2 · t + 585731 .993

FreeBSD y = 479.1 · t + 2000607 .972

OpenBSD y = 240.2 · t + 779607 .891

Table 2. Growth equation for the BSD ker-
nels (based on statistical analysis)

performed their study also on FreeBSD, they would have

found at the time of writing their paper similar patterns

for both of them. Only Linux keeps with such a super-

linear growth, while FreeBSD seems to follow a more

linear shape.

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

freebsd
openbsd

netbsd

Figure 4. Growth of the BSD derivatives

5.2. Growth at the subsystem level

Figure 5 shows the growth of the subsystems for

FreeBSD kernel in the same way we have done in the

previous section for the Linux kernel. The equivalent

figures for the OpenBSD and NetBSD kernels have been

omitted for the sake of space. Subsystems do not grow

super-linearly in any of the three cases, except for dev,

and only in the early times. It is noteworthy that the

shape of the dev subsystem is similar in all cases, possi-

bly due to a common code base.

The arch subsystem is the largest one both in NetBSD

and OpenBSD, although in the latter case it seems to

stop growing early in 2001 contributing a great deal to

the shape to the total OpenBSD system.

Since one of the main goals of NetBSD is to work

on as many platforms as possible, the larger size of arch

isn’t a surprise, neither its continuous growth. OpenBSD

supports many architectures, but with less drivers, and

is the less growing system of the three, probably due to

its strict security/auditing policies (as it is the base of

an operating system targeted to environments with strict

security constraints).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

dev
contrib

kern
i386

Figure 5. Growth of the four largest sub-
systems of FreeBSD

6. Observations on other systems

We have studied 18 more large libre software sys-

tems, to widen the sample, with the aim of applying the

methodology to more cases, and to find out if results

can be generalized. We have focused on projects which

can be considered mature, and with an active community

of users and developers. In particular, we have selected

projects with a more an ample set of contributors (in the

range of the hundreds or above), since a critical mass has

to be achieved to ensure sustainability of large projects

(even if the contributions are unequally distributed) [18].

All of the selected systems are related to well known

libre software projects: GNOME, KDE (both aimed

at building a complete desktop environment), Apache

(well known by its web server, but producing also many

other tools) and Mono (an implementation of .NET).

These projects are usually considered typical libre soft-

ware ones, although several different development mod-

els are found among them. However, all of them include

voluntary and paid development work, external contri-

butions, and interest in satisfying the needs of a sizable

user community.

7

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

Project Start Version 1.0 Prev. Ripples Size Growth Function Corr. coef.

kdelibs May 97 Jul 98 N Y 615K y = 6421.1 · t + −16474.8 r = 0.995

jakarta-commons Mar 01 - N N 429K y = 9394.7 · t + −33888.0 r = 0.994

mcs Jun 01 Jun 04 N N 1081K y = 26002.3 · t + −105089.3 r = 0.993

mono Jun 01 Jun 04 N N 222K y = 4912.9 · t + −3436.6 r = 0.992

koffice Apr 98 Jan 01 N N 780K y = 7965.3 · t + 20724.8 r = 0.992

kdepim Jun 97 Jul 98 N N 512K y = 4920.4 · t + −32103.6 r = 0.990

gnumeric Jul 98 Jun 02 N N 229K y = 3019.9 · t + 17322.8 r = 0.988

gtk+ Dec 97 Apr 98 Y Y 388K y = 3371.7 · t + 89968.9 r = 0.985

xml-xerces Nov 99 Oct 03 Y Y 375K y = 4345.2 · t + 104761.5 r = 0.977

galeon Jun 00 Dec 01 N Y 90K y = 1460.0 · t + 9095.4 r = 0.967

httpd-2.0 Sep 99 Sep 02 Y Y 127K y = 1000.5 · t + 65668.8 r = 0.947

xml-xalan Nov 99 Oct 00 N Y 337K y = 3896.0 · t + 101817.1 r = 0.943

kdebase Apr 97 Feb 99 N Y 362K y = 3097.1 · t + 72062.8 r = 0.935

kdenetwork Jun 97 Jul 98 N Y 293K y = 2142.9 · t + 48781.0 r = 0.933

kdevelop Dec 98 Dec 99 N Y 386K y = 4146.8 · t + −22622.4 r = 0.916

ant Feb 00 (Aug 03) N Y 120K y = 1774.4 · t + 15212.3 r = 0.882

evolution May 98 Dec 01 N Y 208K y = 3801.2 · t + 35801.7 r = 0.842

gimp Dec 97 Jun 98 Y Y 557K y = 2696.7 · t + 317718.9 r = 0.815

Table 3. Summary of the evolution of the libre software systems under study.

The data for these systems has been obtained in April

2005, and at least four years of development are con-

sidered for all of them. Table 3 includes a summary

of the evolution of the 18 libre software systems stud-

ied. For each row, the data about one system (its name

can be found in the first column) is offered: the date

when the system started to use CVS (not the starting

date of the project); the date for the 1.0 version, if avail-

able (in some cases that data is not available, such as

jakarta-commons, because it groups a set of subcompo-

nents that are released independently or in the case of

Ant for which we haven’t found a 1.0 release, so we

have inserted the date for release 1.1); whether a code

base existed before starting the system’s CVS (such as

for GTK+ or The GIMP); whether strong ripples can be

observed in the growth of the system; the current size

of the system (in lines of code); the linear growth func-

tion that fits the data for the system where t is given in

months and y in lines of code; and finally the last column

contains the correlation coefficient for that fitting.

From the 18 projects that have been considered, at

least 9 of them show a clear linear behavior throughout

all the systems life. We have fitted them to a linear func-

tion with r (correlation coefficient) values of about .99

and .98. However, all these systems have quite different

sizes and start dates, which reflect in different slopes for

their growth lines. It is also interesting to notice that for

these projects it is not possible to infer from its growth

plot when version 1.0 was released as the pattern is the

same before and after that release.

From the remaining 9 projects, 6 of them show also a

linear trend, although (strong or frequent) ripples in their

growth curve cause them to be fitted to linear functions

with r below .97 (but in all cases above .91). If those

ripples are filtered out, many of them show a behavior

which is similar to the one observed for the first group.

Ripples are usually due to the inclusion of external code,

the restructuring of the code base or the removal of code.

The remaining three projects, Ant, GIMP and Evolu-

tion, show growth patterns that clearly cannot be fitted

to linear (in fact, they show bad r values of .88, .87 and

.80). While Ant shows a classical smooth growth (with

some ripples early in the year 2002) as found in tradi-

tional software evolution studies up to the moment, the

other two projects may be seen as exceptions or anoma-

lies and hence require further explanation. Evolution

started as a small community-driven project, but about

two years later it was identified by a software company

as a key software for its business model and devoted sev-

eral developers to it. This may explain the super-linear

growth trend in its first stages, until version 1.0 was re-

leased. After that point, the growth follows the usual

pattern identified by Turski, except for the heavy refac-

toring that has made the code base get smaller at least

two times in the latest stages of development. On the

other hand, GIMP was uploaded to the CVS only after

three years of development, already with about 300,000

lines of code, which may cause some distortion. In any

8

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

case, until about 2000 we can observe an almost linear

pattern. But since then its growth has stagnated, in part

because it has a mature architecture, and most of the de-

velopment around GIMP is happening in modules, out-

side what is considered GIMP itself.

Therefore, we can say that 16 out of 18 systems fol-

low a growth pattern linear or close to linear, and those

that do not can be considered special in some sense.

To finish this section, just some considerations about

the ripples found in the second group. The reader should

remember that the systems we are considering are a part

of larger projects, which means that code restructuring

may happen not only intra-project, but also inter-project.

For instance, a sudden gap downwards may mean that

some large part of the source code has been pulled out

from a project to start a more specific one. This behavior

has been previously reported in the research literature on

libre software: so, for instance, for the sake of modular-

ity if the core group of developers grows larger than 15

to 20 developers, the project is split into smaller projects

with the intention of improving manageability [18].

7. Conclusions

In this paper we have shown how Linux continues

exhibiting a global super-linear growth pattern, as was

noticed by Godfrey and Tu five years ago. However,

super-linearity has become even more clear during those

five years. At the subsystem level, the drivers subsys-

tem shows to be the most important component, being

itself the aggregate of many different smaller compo-

nents (device drivers), usually built by different groups

of developers. Most of those device drivers show a linear

growth, but the number of device drivers is increasing,

leading to a total super-linear growth pattern.

Applying the same study to the kernels of the BSD

family, we have found that they are generally not grow-

ing super-linearly. However, before the year 2000 the

growth of FreeBSD was super-linear, and the same can

be said for some of its subsystems, and those of NetBSD.

Except for these cases, the most predominant software

growth pattern is the one that follows linearity.

The appearance of super-linear patterns seem to be

related to the sudden inclusion of external code, to the

existence of residual old code that does not need to be

maintained (for instance, drivers for old devices), to a

specific software architecture design (with an already

fixed specification which has been widely tested, and

therefore only coding has to be done), or to the allo-

cation of work to different development teams. In this

sense, further research should be performed on the lin-

early growing subsystems and find out if super-linearity

is only achievable by aggregating work from different

parallel-working development groups. In any case, it is

not surprising that the Linux kernel shows such a pro-

nounced super-linear growth as it features most (if not

all) of the above characteristics.

With the aim of finding whether these results can

be extrapolated to other (non-kernel) domains, we have

also studied the growth of 18 large libre software appli-

cations. We have found that most of them show a clear

linear growth pattern, in some cases after filtering out

some ripples, due to occasional addition or removal of

large quantities of code.

Therefore we can conclude that, for the sample ana-

lyzed, growth is usually linear, with some cases of super-

linear growth. Since the sample is reasonably large, and

representative of a certain kind of libre software systems

(large in lines of code, with an active community and

user base, stable) we believe that this can be considered

the common growth pattern for this kind of systems.

We can also conclude that there are no noticeable dif-

ferences in the growth pattern before and after the first

stable results (1.0) for most projects. Most of the graphs

shown in this paper show absolutely no difference at

all. We can therefore state that, for the studied projects,

the behavior of the project is one of continuous release,

where the evolution after the first stable release is the

same than when the project was still considered not to

be release-quality.

In any case, the studied systems show a growth rate

that is higher than the smooth growth one and in con-

cordance with the findings of Succi et al. for GCC and

Apache [22]. This could mean that the Fourth Lehman

Law of Evolution does not apply to these large libre

software systems (although our analysis has some dif-

ferences with a classical Lehman study, which should

be further researched).

If this were the case, it could be a consequence of the

particular allocation and availability of human resources

in libre software projects with large surrounding com-

munities. For instance, there are many tasks (such as

testing and bug reporting) that are in fact performed out-

side the core group of developers, which means that man

power in some sense external to the project is actually

actively collaborating to its growth. In other words, the

flexible and auto-organized management of human re-

sources usually found in those projects could be the rea-

son of a growth rate higher than the one found in other,

more rigid and planned cases.

All this said, there is still not enough evidence to

state that linear growth is common in (large) libre soft-

9

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

ware systems, and even if that were the case (as it seems

from our study), why that happens, and to which extent

that contradicts Fourth Lehman’s Law. Therefore, more

projects should be studied, to improve the evidence (or

find cases where growth is not linear), and detailed anal-

ysis should be performed of how human resources are

allocated in libre software projects, with the aim of ex-

plaining the linear growth we have found.

8. Acknowledgments

We thank Juan Antonio Almendral, from the Mathe-

matics, Physics and Natural Sciences Department of the

Universidad Rey Juan Carlos for his invaluable help with

the statistics of this paper.

References

[1] E. Burd and M. Munro. Evaluating the evolution of a C

application. In Intl Workshop on Principles of Software

Evolution, Fukuoka, Japan, June 1999.

[2] A. Capiluppi. Models for the evolution of os projects. In

Proceedings of the Intl Conf on Software Maintenance,

pages 65–74, Amsterdam, The Netherlands, 2003.

[3] A. Capiluppi, M. Morisio, and P. Lago. Evolution of un-

derstandability in oss projects. In Proceedings of the 8th

European Conf on Software Maintenance and Reengi-

neering, Tampere, Finland, 2004.

[4] T. Dinh-Trong and J. M. Bieman. Open source software

development: A case study of freebsd. In Proceedings

of the 10th Intl Software Metrics Symposium, Chicago,

IL, USA, September 2004.

[5] J. R. Ehrenkranzt. Release management within open

source projects. In Proceedings 3rd Workshop on Open

Source Software Engineering, Portland, Oregon, 2003.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release

history database from version control and bug tracking

systems. In Proceedings of the Intl Conf on Software

Maintenance, pages 23–32, Amsterdam, The Nether-

lands, September 2003.

[7] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-

ware evolution observations based on product release

history. In Proceedings of the Intl Conf on Software

Maintenance, pages 160–170, 1997.

[8] D. Germán. The GNOME project: a case study of open

source, global software development. J of Softw Pro-

cess: Improvement and Practice, 8(4):201–215, 2004.

[9] M. Godfrey and Q. Tu. Evolution in Open Source soft-

ware: A case study. In Proceedings of the Intl Conf

on Software Maintenance (ICSM 2000), pages 131–142,

San Jose, California, 2000.

[10] M. Godfrey and Q. Tu. Growth, evolution, and struc-

tural change in open source software. In Intl Workshop

on Principles of Software Evolution, Vienna, Austria,

September 2001.

[11] J. M. Gonzalez-Barahona, M. A. Ortuño Perez, P. de las

Heras Quiros, J. Centeno Gonzalez, and V. Matel-

lan Olivera. Counting potatoes: the size of Debian 2.2.

Upgrade Magazine, II(6):60–66, Dec. 2001.

[12] J. M. Gonzalez-Barahona, G. Robles, M. Ortuño Pérez,

L. Rodero-Merino, J. Centeno-Gonzalez, V. Matellan-

Olivera, E. Castro-Barbero, and P. de-las Heras-Quirós.

Analyzing the anatomy of GNU/Linux distributions:

methodology and case studies (Red Hat and Debian).

In S. Koch, editor, Free/Open Source Software Devel-

opment, pages 27–58. Idea Group, Hershey, PA, 2004.

[13] K. Healy and A. Schussman. The ecology of open-

source software development. Technical report, Univer-

sity of Arizona, USA, January 2003.

[14] S. Koch and G. Schneider. Effort, cooperation and co-

ordination in an open source software project: Gnome.

Information Systems Journal, 12(1):27–42, 2002.

[15] M. Lehman and J. F. Ramil. Rules and tools for software

evolution planning and management. Annals of Software

Engineering, 11(1):15–44, 2001.

[16] M. Lehman, J. F. Ramil, and U. Sandler. An approach to

modelling long-term growth trends in software systems.

In Intl Conf on Software Maintenance, pages 219–228,

Florence, Italy, November 2001.

[17] M. Lehman, J. F. Ramil, P. Wernick, and D. Perry. Met-

rics and laws of software evolution - the nineties view.

In Proceedings of the Fourth Intl Software Metrics Sym-

posium, Portland, Oregon, 1997.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case

studies of Open Source software development: Apache

and Mozilla. ACM Transactions on Software Engineer-

ing and Methodology, 11(3):309–346, 2002.

[19] J. W. Paulson, G. Succi, and A. Eberlein. An empirical

study of open-source and closed-source software prod-

ucts. Transactions on Softw Eng, 30(4), April 2004.

[20] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.

Gluetheos: Automating the retrieval and analysis of

data from publicly available software repositories. In

Proceedings of the Intl Workshop on Mining Software

Repositories, Edinburg, Scotland, UK, 2004.

[21] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and

A. J. Offutt. Maintainability of the linux kernel. IEE

Proceedings–Software, 149:18–23, 2002.

[22] G. Succi, J. Paulson, and A. Eberlein. Preliminary re-

sults from an empirical study on the growth of open

source and commercial software products. In EDSER-

3 Workshop, Toronto, Canada, May 2001.

[23] W. M. Turski. Reference model for smooth growth of

software systems. IEEE Transactions on Software Engi-

neering, 22(8):599–600, 1996.

[24] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue.

Measuring similarity of large software systems based on

source code correspondence. In 6th Intl PROFES (Prod-

uct Focused Software Process Improvement) conference,

PROFES 2005, Oulu, Finland, June 2005.

10

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

